
,_JUN 3 0 zUu
REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden "or tills collection ot intormation is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations andReports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington. DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

7 28.Jun.06 MAJOR REPORT
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
SOFTWARE QUALITY MANAGEMENT RECOMMENDATIONS.

6. AUTHOR(S)

MAJ HERVEY MARCUS W

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
UNIVERSITY OF HOUSTON REPORT NUMBER

C10441809

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
THE DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

11. SUPPLEMENTARY NOTES20 6 709,,su 20060706090
12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT •ufa, 3UTiCAlyS N SUT 0 STA'rEF.P1 .MT A

Approved for Public Release
Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

15
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Starndard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94



Software Quality Management Recommendations

Publication: Crosstalk: The Journal of Defense Software Engineering
Theme: Management Basics
Submittal Deadline: 19 Jun 06
Publishing Date: November 06

Abstract:

Quality has always been an important element of successful software

development and maintenance. However, quality seems to always take a back seat to

cost and schedule. Delivering deficient products on time and under budget may still

result in project failure. Military organizations responsible for the acquisition and

development of software must focus on quality in order to keep up with the increased

demands for complex, software-intensive systems. This article presents some of the

major components of software quality management and offers ten recommendations to

improve software quality within your organization.

~ ~TA
Appr' owd ior Public ReleaseDistribution Unlimited



THE VIEWS EXPRESSED IN THIS ARTICLE ARE
THOSE OF THE AUTHOR AND DO NOT REFLECT
THE OFFICIAL POLICY OR POSITION OF THE
UNITED STATES AIR FORCE, DEPARTMENT OF
DEFENSE, OR THE U.S. GOVERNMENT.



Article:

A management discussion on software-intensive systems would not be complete

without highlighting the importance of effective software quality management. 30 years

after Fred Brooks' ground-breaking book, The Mythical Man Month, consistent software

quality continues to elude the software development community. A major cause is the

continued lack of focus on quality throughout many software development organizations

and software projects. In many cases, the focus of program/project management is

primarily targeted on cost and schedule, while sacrificing performance. An oversight of

quality issues can cause problems to remain hidden until after the product has been

released, therefore being more costly to resolve. Most quality problems result from an

immature process, an outdated process or a lack of discipline to follow a process.

Military organizations responsible for the acquisition and development of software must

continue to institutionalize and implement effective software quality management

techniques, to keep up with the increased demands for complex, software-intensive

systems. This article presents some of the major components of software quality

management and offers ten recommendations to improve software quality within your

institution.

To understand the value of the proposed recommendations, it is important to

dissect the goal of software quality into some of its major components. In this article,

we will discuss the five components of leadership, planning, process management,

project management, and education and training. These five components are shown in

Figure 1 and their relationships are shown in Figure 2.



Software Quality
Management

Leadership Quality Project Process Education and
Planning Management Management Training

Figure 1. Major Components of Organizational Software Quality

Leadership
Quality Products

and Services
S• Goals & Project

0-a Objectivs Management

F e R i itw Quality ComSPlanning CD • ::•:o

C3 t Process
(D/ bQcivsx Management

S Education and Training

Figure 2. Relationship between Major Software Quality Components



Leadership

Leadership, the first component, is fundamental for software quality efforts to

succeed. Senior management, within an organization, must make a visible commitment

to quality, and must inspire others in the organization to follow defined processes and

implement software quality best practices.

Leadership is also needed to ensure quality principles are institutionalized. This

can be achieved through the development of an environment that enables a mindset in

which quality is the responsibility of everyone, and each individual feels like a

contributing member of a team with an investment in the final product.

Quality Planning

Once leadership has provided the scope, quality planning naturally follows as the

second major component. Software quality efforts have to be planned in order to be

successful, and this component involves identifying relevant and realistic quality goals

and objectives that can be measured.

Proiect Management

Project management, the third component, is essential to delivering high quality

software systems. While all aspects of project management are important, this article

highlights the importance of risk and configuration management. Risk management

involves identifying and tracking quality and performance risks, and implementing



appropriate mitigation strategies as early as possible. Configuration management is

also important and enables change and error control throughout the software lifecycle.

Process Management

Just as specific aspects of a project, need to be managed, the same is also true

for organizational software processes. The fourth component of software quality is

process management and involves ensuring new processes are defined, followed and

updated.

A key part of process management involves continuous process improvement.

Every process can be enhanced. The challenge is identifying where improvements

should be made and using change management techniques to effectively implement the

process improvements.

Quality Education and Training

The final component is education and training. To be effective, personnel have

to be trained on many aspects of software quality. Knowledge, skills and abilities must

be taught and demonstrated on software quality principles, the organization's software

development process, the importance of software metrics, and software quality

assessments models. Personnel must also be made aware of how they can improve

their own personal processes.



RECOMMENDATIONS

The previous review of some major software quality components provides a

foundation for the following recommendations proposed. These recommendations

should not replace a software quality program specifically tailored for your project or

organization, but could be used as a catalyst for your organization-wide software quality

initiatives. Table 1 lists ten software quality improvement recommendations and their

relation to the software quality components previously discussed.

1. Focus on a common software "quality" definition Leadership
2. Focus on software quality planning Quality Planning
3. Focus on developing "quality" people Education & Training
4. Focus on quality assessments Process Management
5. Focus on requirements Project Management
6. Focus on creating an effective SQA group Process Management
7. Focus on risk mitigation Project Management
8. Focus on defect prevention Process Management
9. Focus on software quality metrics Project/Process Management
10. Focus on teamwork Project Management

Table 1. 10 Quality Improvement Recommendations

Recommendation 1: Focus on a common software "quality" definition

What does quality mean to your organization? One of the first steps in

developing a software quality program is to come to a consensus on the definition of

quality within your organization and with your users and customers. This definition can

be used to help communicate the organization's vision for software quality and is

commonly documented in an organizational software quality policy.



Microsoft has improved their understanding of what quality means to its

customers and has renewed its focus on software quality in the development of the

anticipated Windows Vista operating system. A company spokesperson recently stated

that "...the top priority for Windows Vista is quality." This focus on quality specifically

led to a mature decision to remove a highly anticipated synchronization feature from the

Windows Vista operating system because it was not performing to a customer

acceptable quality level.

Recommendation 2: Focus on software quality planning

Software quality efforts have to be planned in order to be successful.

Documenting plans also provides a mechanism to monitor and compare planned with

actual results. Two specific plans that are useful in documenting the results of the

software quality planning process include the Software Quality Assurance Plan (SQAP)

and the Software Verification and Validation Plans (SVVP).

The SQAP is used to document quality objectives and identify milestones with

respect to product and process quality initiatives. The SVVP is used to document the

specific activities your organization will perform to verify and validate the quality of the

software product. Templates for the contents of a SQAP and a SVVP can be found in

IEEE Standard for Software Quality Assurance Plans (IEEE Std 730-1998) and IEEE

Standard for Software Verification and Validation Plans (IEEE Std 1059-1993),

respectively. However, the templates should be tailored to represent your specific

development efforts.



Recommendation 3: Focus on people

People are an organization's most important resource. Therefore it's important

for any software development organization to make an investment in ensuring its

personnel understand the importance of quality, are trained in the organization's

development process, and know how to implement recommended software quality best

practices. Specifically, development of personnel can be achieved by providing

education and training programs on quality within your organization and through the

encouragement of individuals to obtain professional quality and software engineering

training and/or obtain certifications.

Three professional certification programs are highlighted that may be beneficial

in improving the skills of personnel toward building quality software systems. The three

certification programs include the Certified Software Quality Engineer (CSQE), the

Certified Software Development Professional (CSDP) and the Project Management

Professional (PMP) certifications.

The American Society for Quality (ASQ) offers many certifications related to

quality. Specifically, the CSQE certification is most appropriate for individuals interested

in software quality. This certification tests proficiency in 8 knowledge areas related to

software quality fundamentals.

The Institute for Electrical.and Electronic Engineers (IEEE) Computer Society

offers the Certified Software Development Professional (CSDP) certification. This

certification tests ten knowledge areas based upon the Software Engineering Body of

Knowledge (SWEBOK).



The Professional Management Institute (PMI) offers the Project Management

Professional (PMP) certification that certifies proficiency in 9 knowledge areas based

upon the Project Management Body of Knowledge (PMBOK).

The Air Force Institute of Technology School of Systems and Logistics at Wright-

Patterson Air Force Base also offers the Software Professional Development Program

(SPDP) which is provided free to all Department of Defense employees. This program

offers a distance learning format that can provide a more practical software engineering

education. SPDP is also a registered education provider for the IEEE CSDP

certification program. This allows individuals who complete SPDP courses to earn

points towards fulfilling CSDP recertification requirements. More information on the

AFIT SPDP program can be found at http://Is.afit.edu.

Recommendation 4: Focus on software quality assessments

How do you know how far you have to go to reach your goal, if you don't know

where you are? Assessments are important because they provide a basis for your

quality improvement program and highlight strengths and identify weaknesses.

Software quality process assessments are useful in providing software organizations an

assessment of their software process maturity. The Software Engineering Institute's

(SEI) Capability Maturity Model Integration (CMMI) and the International Standards

Organization (ISO) 9001 are two software quality assessment models that can be used

to assess the maturity level of your organization. The CMMI provides a both a

continuous and a stage representation model for software development maturity.



Recommendation 5: Focus on requirements

A quality system results from a focus on requirements that are traceable and can

be validated. It is important to spend time early in the software development lifecycle to

create quality requirements that can be traced backwards to system requirements and

traced forward to design specifications, test specifications, test procedures, test cases,

and test results. It is equally important to understand how functional requirements will

be validated as they are defined in the software requirements specification. Common

validation methods include demonstration, test, analysis or inspection. Identifying the

validation method of a requirement at during its definition also enables better

requirements to be created. Effective communication is the key in defining "quality"

requirements. Table 2 displays a list of some common attributes that quality

requirements should possess.

0 Accuracy * Portability
* Completeness 0 Readability
* Consistency * Reusability
e Correctness 0 Reliability
0 Efficiency 0 Safety
0 Expandability 0 Security
0 Flexibility 0 Survivability
* Interoperability * Testability
* Maintainability * Usability
0 Manageability

Table 2. Software Quality Attributes



Recommendation 6: Focus on creating an effective SQA group

An effective Software Quality Assurance (SQA) group is an important element of

ensuring software quality. The main goal of SQA is to provide senior management with

information pertaining to the quality of the product and process. This is accomplished

throughout the software lifecycle and includes oversight over software quality related

functions, auditing of the product and process and reporting quality concerns. SQA is a

major function and should be staffed with experienced personnel that are proficient in

quality assurance techniques and able to contribute to projects in a fashion that is seen

as being a positive influence in the development, instead of a negative one.

Recommendation 7: Focus on risk mitigation

Every project has risks that can impede the progress or quality of a software

product. Therefore it is important to seriously identify any potential risks that may occur.

Once risks have been identified and categorized based on their severity and probability

of occurrence, potential risk mitigation strategies should be developed. The earlier risks

can be identified, monitored and mitigated, the better the chance the project will not be

negatively affected.

Recommendation 8: Focus on defect prevention

Defect prevention is more important that defect detection. Defect detection is a

reactive role, where defect prevention is a proactive role. An IBM innovation, called the

Defect Prevention Process, uses a closed-loop method to detect errors, analyze them

and change the process to prevent them from occurring again. The idea is that you



make an error once, and then learn from that error in order to prevent ever making the

same error again. This form of defect prevention works well if an organization analyzes

their work after it is completed it was integrated into the development process. One

disadvantage of this approach is to become overwhelmed with the number of potential

improvements, but this be remedied through prioritization.

Recommendation 9: Focus on Software Quality Metrics

The identification of appropriate performance measures is important in managing

the quality of a software-intensive system. Metrics allow the project to be quantitatively

monitored and can be useful in identifying trends and problem areas. It is important to

consciously determine the right metrics to use to help ensure quality. They should be

meaningful and attainable, based on how the data is gathered. Appropriate metrics

should also be identified to monitor both the quality of the product and the process.

Some examples of product and process metrics can be found in Table 3.

* Percentage of requirements 0 Number of requirements successfully
demonstrated during testing traced through design, code and test

* Number of known defects 0 Number of defects introduced per
developer hour

Ratio of tests passed to tests performed 0 Number of items reworked

Table 3. Software Product and Process Metrics



Recommendation 10: Focus on teamwork

Software development is a team sport. Successful teams can accomplish major

goals and conquer major challenges. Effective teamwork is even more necessary with

the increased need for complex software systems. Everyone must know their part and

roles and responsibilities should be well defined and understood. The key to teamwork

is effective communication about the project and the process. Creating or updating your

organizational software process handbook, coding standards and developing naming

conventions. These products are effective ways to enhance team communication and

foster better teamwork. The development of a best practices or lessons learned

database can may also be beneficial in improving team performance through learning

from past mistakes.

CONCLUSIONS

Reputations are built around quality, and software quality management must be

looked at as more than just a necessary evil, but as a guiding principle. This article

presented some common software quality techniques that will allow software managers

and engineers to build higher quality software systems. Implementing a few best

practices can improve the confidence in your organization's products and processes.

The ten recommended actions can be used to start improving the management of

software quality within your organization or as a start to developing a more robust

software quality program.

The investment needed to achieve software quality requires effort, but the

benefits of meeting customer and end user needs are well worth it. Most software



quality concepts are not difficult to understand, however organizational management

and software personnel must practice discipline in adhering to these concepts and be

willing to continually improve their processes. So while most program/project

management may currently focus on cost and schedule, we offer ten recommendations

why you may want to try a new prescription. FOCUS ON QUALITY!

REFERENCES

[1] Brooks, Frederick. The Mythical-Man Month: Essays on Software Engineering.
New York: Addison Wesley Longman, Inc., 1995.

[2] Davis, Alan M. Software Requirements. Upper Saddle River: Prentice Hall PTR,
1993.

[3] Foley, Mary Jo. "Another Windows Vista Feature Bites the Dust." Microsoft Watch.
http:www.microsoft-watch.com, June 7, 2006.

[4] Humphrey, Watts. Managing the Software Process. New York: Addison-Wesley
Publishing Company, Inc., 1995.

[5] IEEE Std 730-1998. IEEE Standard for Software Quality Assurance Plans.

[6] IEEE Std 829-1998. IEEE Standard for Software Test Documentation.

[7] IEEE Std 830-1988. IEEE Recommended Practice for Software Requirements
Specifications.

[8] IEEE Std 982.2-1988. IEEE Guide for Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software.

[9] IEEE Std 1016-1998. IEEE Recommended Practice for Software Design
Descriptions.

[10] ANSI/IEEE Std 1042-1987. IEEE Guide to Software Configuration Management.

[11] IEEE Std 1044.1-1995. IEEE Guide to Classification for Software Anomalies.

[12] IEEE Std 1059-1993. IEEE Guide for Software Verification and Validation Plans.

[13] IEEE Std 1061-1998. IEEE Standard for a Software Quality Metrics Methodology.



[14] MIL-HDBK-286. A Guide for DOD-STD-2168, Defense System Software Quality

Proqram.

[15] MIL-Q-9858A. Quality Program Requirements.

[16] IEEE Std 1059-1993. IEEE Standard for Software Verification and Validation
Plans

[17] IEEE Std 1061-1998. IEEE Standard for a Software Quality Metrics Methodology.

[18] Kaplan, Craig, Ralph Clark, and Victor Tang. Secrets of Software Quality. New
York: McGraw-Hill, Inc., 1995.

[19] Pressman, Roger S. Software Engineering: A Practical Approach. 3rd ed. New
York: McGraw-Hill, Inc., 1992.

[20] Yourdan, Edward. Decline & Fall of the American Programmer. Englewood Cliffs:
PTR Prentice-Hall, Inc., 1992.

Major Marcus W. Hervey, PMP, is currently a student at the University of
Houston, working towards a doctorate degree in Computer Science, and
aspiring to become an instructor for the Software Professional Development
Program at the Air Force Institute of Technology. He has more than 14
years experience in the U.S. Air Force with over 10 years experience in
systems engineering and software development and management. He
holds a Bachelor of Science degree in Electrical Engineering from the
United States Air Force Academy and a Master of Science degree in
Computer Information Systems from St. Mary's University in San Antonio,
Texas. He is a member of the American Society of Quality, the Institute of
Electrical and Electronic Engineers and the Project Management Institute.

Air Force ROTC Det 003
Garrison Rm 109F
University of Houston
Houston, TX 77204-5048
(713) 429-4091
E-mail: mwhervey@cs.uh.edu


